

Tester with manual probes

What is MPT tester?

MPT – "Multi Purpose Tester"

- universal, open and customer oriented tester platform
- set of devices controlled by
- funTEST SW in order to meet the product test specification

WHY funTEST?

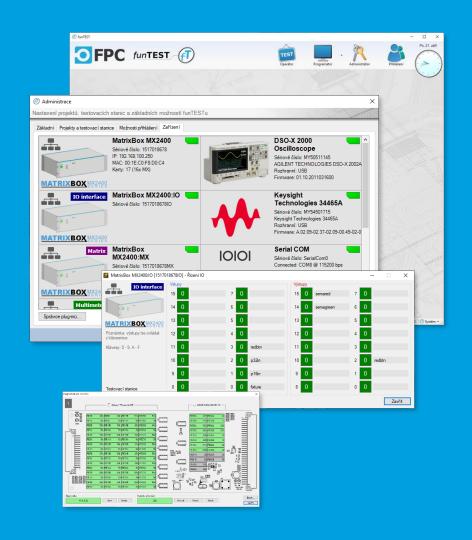
- Easy to use
- Full control
- Adaptation to needs
- Many extensions

Optimal Characteristics

- Clear operator-interface
- Comfortable programming interface
- Unlimited process sequence control
- Open interface for HW device
- Customer solution in the form of plugins

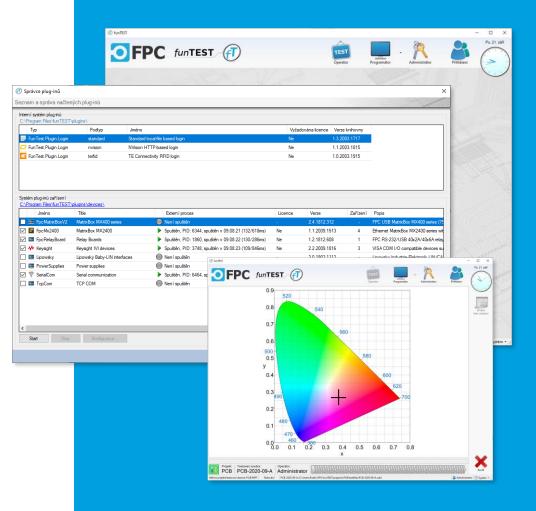
	1	2	2	<u> </u>	OK NG	264 19	
		<u> </u>	5				
				0	🖻 Package	26	Zm test. so
DOB	ŘΕ	ŠPATNĚ	Testování	Připraven			test. so
							0123 Tisk
				D	loba testu 0 mir	n, 20 sec	C
Čae	Iméno kroku	Měře		oudu napájecího z	-	Differ	Nulova
Čas 9:47:26.46	Jméno kroku Supply current	Měře	ení napětí a pro	Jednotk: Dolní limit	Horni limit	Piłez 505 3	Nulova
9:47:26.46	Supply current	Měře		Jednotk: Dolní limit 49.72 mA	- Horni limit 49.5	50.5 3	
		Měře		Jednotk: Dolní limit	Horni limit		
9:47:26.46 9:47:26.43	Supply current Supply voltage	Měře		Jednotk: Dolni limit 49.72 mA 3.3 V	Horni limit 49.5 3.27	50.5 3 3.33 3	
9:47:26.46 9:47:26.43 9:47:26.41	Supply current Supply voltage C10	Měře		Jednotki Dolni limit 49.72 mA 3.3 V 9.98 nF	49.5 3.27 9.9	50.5 3 3.33 3 10.1 3	
9:47:26.46 9:47:26.43 9:47:26.41 9:47:26.39	Supply current Supply voltage C10 C9	Měře		Jednotk: Dolní limit 49.72 mA 3.3 V 9.98 nF 10.01 nF	Horni limit 49.5 3.27 9.9 9.9	50.5 3 3.33 3 10.1 3 10.1 3	
9:47:26.46 9:47:26.43 9:47:26.41 9:47:26.39 9:47:26.37 9:47:26.34 9:47:26.31	Supply current Supply voltage C10 C9 C8 C7 C6	Měře		Jednotki Dotni imit 49.72 mA 3.3 V 9.93 nF 1001 nF 9.99 nF 9.96 nF 9.964 nF	Homilimit 49.5 3.27 9.9 9.9 9.9 9.9 9.9 9.9 9.9	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3	
9:47:26.46 9:47:26.43 9:47:26.41 9:47:26.39 9:47:26.37 9:47:26.34 9:47:26.31 9:47:26.29	Supply current Supply voltage C10 C9 C8 C7 C6 C5	Měře		Jadnotki Dolni imit 49.72 m 3.83 v 3.98 nF 1001 nF 9.99 nF 9.96 nF 9.936 nF	Hom limit 495 327 99 99 99 99 99 99	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 101 3	
9.47:26.46 9.47:26.43 9.47:26.41 9.47:26.39 9.47:26.37 9.47:26.34 9.47:26.31 9.47:26.29 9.47:26.27	Supply current Supply voltage C10 C9 C8 C7 C6 C5 C5 C4	Měře		Jedno%: Dohi limit 48.72 mÅ 3.3 V 9.93 nF 1001 nF 9.93 nF 9.956 nF 9.956 nF 9.956 nF 9.956 nF	Homilimit 49.5 3.27 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 101 3 101 3 101 3	
9.47:26.46 9.47:26.43 9.47:26.41 9.47:26.39 9.47:26.37 9.47:26.34 9.47:26.31 9.47:26.29 9.47:26.27 9.47:26.25	Supply current Supply voltage C10 C9 C8 C7 C6 C5 C4 C3	Měře		Jedrofik: Doln'ilmit 42.2 mA 9.33 V 9.56 m ² 9.56 m ² 9.56 m ² 9.964 m ² 9.900 m ² 9.922 m ² 0.99 w ²	Hom limit 49.5 3.27 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 101 3 101 3 101 3 101 3	
9.47.26.46 9.47.26.43 9.47.26.41 9.47.26.39 9.47.26.37 9.47.26.37 9.47.26.31 9.47.26.23 9.47.26.27 9.47.26.25 9.47.26.22	Supply current Supply voltage C10 C9 C8 C7 C6 C5 C5 C4 C3 C2	Měře		Jednok: Doki limit 48.72 mA 9.33 v 9.93 nF 1007 nF 9.95 nF 99.96 nF 99.96 nF 99.96 nF 99.22 nF 9.92 nF 0.99 uF	Homi limit 45.5 3.27 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 101 3 101 3 101 3 101 3 101 3 1.01 3	
9.47.26.46 9.47.26.43 9.47.26.41 9.47.26.39 9.47.26.37 9.47.26.34 9.47.26.29 9.47.26.27 9.47.26.27 9.47.26.22 9.47.26.22 9.47.26.22	Supply current Supply voltage C10 C3 C3 C5 C4 C3 C2 C2 C1	Měře		Jednotk: Dotri limit 49.22 mA 9.930 nF 1001 nF 9.956 nF 9.956 nF 9.956 nF 9.900 nF 9.900 nF 9.922 nF 1.990 uF 1.011 uF	Hom limit 3.37 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.0 99 0.99 0.99 0.99 9.9	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 101 3 101 3 101 3 101 3 101 3 101 3 101 3 101 3 101 3 10.1 3	
9472646 9472643 9472643 9472637 9472637 9472637 9472631 9472623 9472627 9472627 9472625 9472622 9472620 9472618	Supply current Supply voltage C10 C9 C3 C7 C5 C4 C3 C2 C4 C3 C2 C1 R10	Měře		Jednok: Doki limit 49.22 mÅ 3.3 V 9.930 nF 1001 nF 9.956 nF 9906 nF 9906 nF 9922 nF 0.99 uF 1 uF 1011 uF 0.99 Ohm	Homi limit 455 327 99 99 99 99 99 99 99 99 99 099 099 099	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 10.1 3 1.01 3 1.01 3 1.01 3 1.01 3 1.01 3	
9.47.26.46 9.47.26.43 9.47.26.41 9.47.26.39 9.47.26.37 9.47.26.37 9.47.26.34 9.47.26.31 9.47.26.23 9.47.26.27 9.47.26.25 9.47.26.22 9.47.26.22	Supply current Supply voltage C10 C3 C3 C5 C4 C3 C2 C2 C1	Měře		Jednotk: Dotri limit 49.22 mA 9.930 nF 1001 nF 9.956 nF 9.956 nF 9.956 nF 9.900 nF 9.900 nF 9.922 nF 1.990 uF 1.011 uF	Hom limit 3.37 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.0 99 0.99 0.99 0.99 9.9	50.5 3 3.33 3 10.1 3 10.1 3 10.1 3 10.1 3 101 3 101 3 101 3 101 3 101 3 101 3 101 3 101 3 101 3 10.1 3	

Easy programming

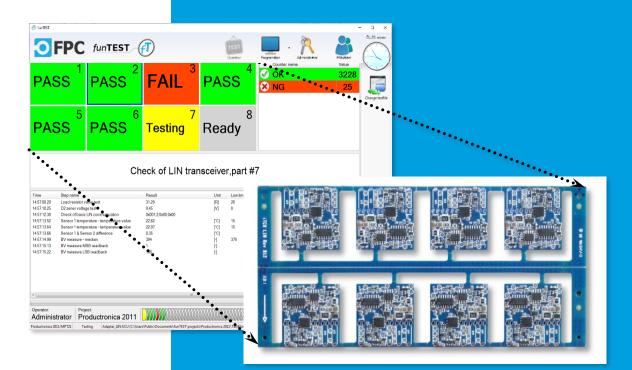

- Based on spreadsheets
- Sequences
- Easy editation
- Canned commands

CB-2020-09-A.or or Úpravy Zob		zit Formát Nástroje Dat	a Okno Nápovéda														- 0	·
• 🔡 📄 👒			han na an a	📥 🛷 i 👪	0 🛱 🔍 🛛	Naiit	~	4 4										
DejaVu Sans N			/ ⊻ ≡ ≡ ≡ ≡						-									
		E =		<i>m m</i> · ~	4-1-0-125	×												_
A	B		F	G	н	1 1		C 1	L	M	N		0	P	Q	R	S	
Label			Comment							Show	Return	Return	-				Command (Device)	
Label	Exec	Step name	(Error message)	Judge	Target value	UNIT LO CIMI	1111	ALC N	esult	result	status	vatue		Delay	10	Matrix	(Device)	_
	1										0	0					#cnt	
ain	1										Θ	1					#cnt	
ycle	1										0	3					Wont	
	1										Θ	3					#panel	
	1	R1 R2		0	100		99 99	101	100.53	1	0	128265 128281					#get	
	1	R2 R3		0			99 99	101	99.6/		0	128281 128296					#get #get	
	1	R4		0	10	k0hm S	.9	10.1	10.07	1	1 0	128312					#get	
	1	RS		0				10.1	10.09	1	1 0	128343					#get	
	1	R6 87		0				10.1	9.97	1	1 0	128359 128390					#get	
		R/		0		kühm 0.		1.01	1.01		0	128390					#get #get	
	1	RS		θ		k0hm 0.		1.01	1		0	128421					øget	
	1	R10)	0	1	Ohn 0.	99	1.01	1.01	1	1 0	128453					øget	
		0			10		.9	10.1	9,97			128468						_
	1	2		0	10			1.01	9.9/		0	128408					#get #get	
	1	(3		8	1			1.01	0.99	1	1 0	128515					øget	
	1	C4		0	100		99	101	99.97	1	1 0	128546					#get	
	1	C5		0	100		99 99	101	100.23	1	0	128562 128593					#get	
	1			0	100			10.1	9.92		0	128593					#get #get	
	1	C8	8	8	10	nF S	.9	10.1	9.91	1	1 0	128625					#get	
	1 1 1	C9		0	10			10.1	10.04	1	1 0	128656					øget	
	1	C10		0	10	nF S	.9	10.1	10.03	1	1 0	128687					#get	
	1	Supply voltage		8	3.3	V 3.	27	3.33	3.28	1	θ	128703					#get	-
	1	Supply current		0	50			50.5	49.76	1		128718					øget	
	1										0	4 OK					#cnt #goto	
	1										0	5					#grt0	
	0										Θ	OK					#goto	
	1										θ	OK					#goto	
othing	1																#return	
																		_
END HEAD/R																		

Wide hardware support


- Equipped basic package
- (I/O, DMM, converters, cameras, ...)
- Optional plugins
- Tuning and graphical control

Extendability


- Device integration (API)
- Customer SW options
- Open plugin-interface

Optional modules

- Panel test
- Multitest
- Batch test
- Dummy test
- Shared config option

What a MPT tester can do?

- PCB and electronic product subassemblies tests
- Automatic programming of circuits
- Final product EOL tests
- Optical tests and controls
- Automatic testing and assembly processes with intermediate control in cooperation with PLC
- High-voltage tests

SAFIRAL

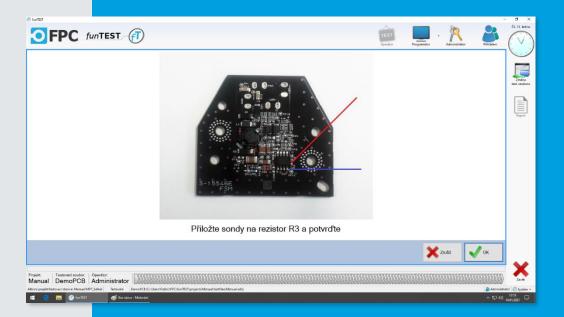
What can a MPT tester look like?

- simplest option operator's table with the devices and PC control
- complex option 19" rack with interface for quick adapter replacement and contacting
- Customization, including possible connection to third-party devices, typically a connection to an In-Line handler

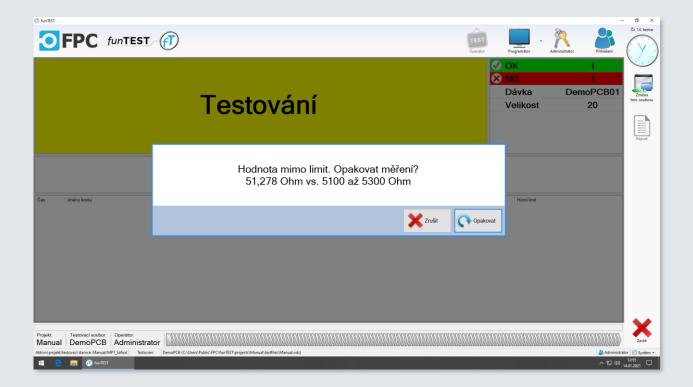
How to test small series?

Frequent objection: investment to bed-of-nails fixture is not economical for small series

FPC solution: MPT with manual probes



MPT with *fun***TEST** (7) + modul with conectors and manual probes + foot pedal Program block in *fun***TEST** (7) easy na intuitive steps


Spustit	Jméno procedury	Jméno měření	Instrukce pro obsluhu	Ilustrační obrázek	Minimum	Maximum	Jednotka	Násobitel	Nastavení přístroje	Retest	Uložit
1	infoDialog		Připojte testovaný výrobek dle obrázku	Connect1.jpg							
1	measDmm	Odpor R1	Přiložte sondy na tyto body a potvrďte	R1.jpg	1,2	1,5	kOhm	1,00E-03	RES 10000	1	1
1	measDmm	Odpor R2	Přiložte sondy na tyto body a potvrďte	R2.jpg	100	120	Ohm	1,00E+00	RES 1000	1	1
1	measDmm	Kapacita Cl	Přiložte sondy na tyto body a potvrďte	Cl.jpg	10	15	uF	1,00E+06	CAP 1E-4	1	1
1	measDmm	Kapacita C2	Přiložte sondy na tyto body a potvrďte	C2.jpg	100	150	nF	1,00E+09	CAP 1E-6	1	1
1	measDmm	Napeti Vl	Přiložte sondy na tyto body a potvrďte	V1.jpg	3,2	3,3	V	1,00E+00	VOLT:DC 10	1	1
1	measDmm	Napeti V2	Přiložte sondy na tyto body a potvrďte	V2.jpg	1,2	1,3	V	1,00E+00	VOLT:DC 10	1	1
1	power0n								VOLTAGE 3.6		
1	measPsuI	Napajeci proud			10	25	mA	1,00E+03		Θ	1
1	infoDialog		Připojte testovaný výrobek k programát	Connect2.jpg							
1	flashMcu	Programovani								1	1
1	power0ff										

- "electronic guide"
- Pictures (photos) with positions for placing probes
- Text instructions
- Step confirmation with foot pedal

SAFIRAL

72109 C12 100.34 m ^E 00 120 72167 C1 98.95 m ^E 80 120 7110 Q2 0.37 V 0.3 0.4 70678 D1 0.61 V 0.5 0.7 6555 L4 0.59 Ohm 0.5 12 014 0.84 Ohm 0.7 14	FPC funtest (1)	DOBŘE	vkračujte pedálem	regenter ver	Administrator PermoPCB01 20
2/110 02 0.37 V 0.3 0.4 7057b 01 061 V 0.5 0.7 6565 1.4 0.59 Ohm 0.5 1.2 64405 1.4 0.84 Ohm 0.7 1.4 6431 6.5 1.2 1.4 1.4		Výsledek			120
705.7% D1 0.61 V 0.5 0.7 655.65 L4 0.59 Ohm 0.5 1.2 64405 L1 0.84 Ohm 0.7 1.4 64311 R5 5.22 Ohm 48 54					
65555 L4 0.59 Ohm 0.5 1.2 64105 L1 0.84 Ohm 0.7 1.4 64311 F5 5128 Ohm 48 54					
4405 L1 0.84 Otm 0.7 1.4 643.11 R5 51.28 Otm 48 54					
6.43.11 R5 51.28 Ohm 48 54					
			5174,37 Ohm	5100	5300

Test report
Created: 14.01.2021 13:04:05 by Administrator
Product: DemoPCB
Batch: DemoPCB01 (4 pcs)

Serial number: 2

Test step	Measured value	Unit	Result
R3	5192,8	Ohm	Pass
R5	51,25	Ohm	Pass
L1	0,83	Ohm	Pass
L4	0,59	Ohm	Pass
D1	0,61	V	Pass
D2	0,37	V	Pass
C11	98,94	nF	Pass
C12	98,94	nF	Pass

- MPT with funTEST (7)
- automation, visualization
- Reduction of operator qualification requirements
- Recording of test results
- report for the customer
- FPC service
- Easy addition of an adapter when production increases

- FPC service
- Tester proposal after the consultation with the customer – parameters according to needs
- Installation and activation of the tester
- Installation at customer's place, connection to the database
- Sample test programs
- funTEST 🕣 training

SAFIRAL

Who already uses MPT testers from FPC?

- 100 satisfied customers from all over the world
- 400 installations from simple to complex testers, including automated lines and carousels automatizovaných linek a karuselů
- companies from EMS, Automotive, Industry, Aerospace, Wire Harness fields of application

SAFIRAL

Test equipment purchased from FPC s.r.o.

Contact persont: Luboš Bejček / e-mail: lubos.bejcek@fpc.cz

We are looking forward to our cooperation.

SAFIRAL s.r.o. Fr. Halase 151, Kunštát 679 72 tel. +420 516 411 434 e-mail: ems@safiral.cz www.safiral.cz

